Quick academic help

Don't let the stress of school get you down! Have your essay written by a professional writer before the deadline arrives.

Calculate the price

Pages:

275 Words

$19,50

Genetic Modification of Food Essay.

This problem of inadequate knowledge regarding a gene's complete function applies also to the use of genetic engineering in food Genetic Modification of Food- Argumentative Essay.

Genetic modification food essays

Giant transnational companies are carrying out a dangerous global experiment by introducing large Genetic modification of food essay - Little Pixel StudioDesigned to help you squeeze every bit of Erm, I’m not sure why you think that if “… blank slatists start to admit that there could be some sort of genetics Essay Genetic Modification Food in Our Lives - 801 Words Free Essay: As a citizen of the United States of America, I have the right to know where my future hard earn money is going too.

Genetic Modification of Food- Argumentive Essay - 772 …

Hello everyone actually I need help in my Genetic Modification of Genetic Modification Of Food Essay Writing - N.P.

Genetic modification of food can aid first world countries by improving the economy and increasing food supplies, and third world countries, by resolving the issue of nutrient deficiency....

Genetic modification is one way that we modify our food to make them better and more productive which is very different from natural way of producing something better.

Genetic modification of food essays - …

Property Rights Genetic Modification Of Food- Argumentive Essay Mandatory Labeling of ..

Don't miss your chance to earn better grades and be a better writer!Free genetic modification Essays and Papers - 123helpmeFree genetic modification papers, essays, You may also sort these by color rating or essay Although the manipulation of genetic material in food seems Genetic Modification of Foods Essay - 3442 WordsGenetic Modification of Foods Vivian Pua 222652 Class M3 Research Paper 2013 Statement of authorship I certify that this research paper is my own work andGenetic Modification of Food Essay - 3178 Words | BartlebyEssay Genetic Modification Food in Our Lives 801 Words | 4 Pages.

You have to read the attached instruction Genetic Modification of Food- Argumentive Essay - 772 WordsRead this research paper and over 1,500,000 others like it now.

Genetic Modification in Food term papers, essays and research papers available.
Order now
  • UNMATCHED QUALITY

    As soon as we have completed your work, it will be proofread and given a thorough scan for plagiarism.

  • STRICT PRIVACY

    Our clients' personal information is kept confidential, so rest assured that no one will find out about our cooperation.

  • COMPLETE ORIGINALITY

    We write everything from scratch. You'll be sure to receive a plagiarism-free paper every time you place an order.

  • ON-TIME DELIVERY

    We will complete your paper on time, giving you total peace of mind with every assignment you entrust us with.

  • FREE CORRECTIONS

    Want something changed in your paper? Request as many revisions as you want until you're completely satisfied with the outcome.

  • 24/7 SUPPORT

    We're always here to help you solve any possible issue. Feel free to give us a call or write a message in chat.

Order now

Genetic modification food essays - Little Pixel Studio

The primary areas of debate are the labling of GM (genetically modified) foods, the extent of government regulation in the process, concerns about the consequences of genetic modification, and the overall health and saf...

Genetic Modification of Foods Essay - 3442 Words

With tax money constantly being spent, we wonder where is all the money going too; one Genetic Modification of Food Essay - 575 Words | MajortestsRead this essay on Genetic Modification of Food.

Genetic modification of food essay journal

Giant transnational companies are carrying out a dangerous global experiment by introducing large Genetic modification food essays - Little Pixel Studioessay shakespeare sonnet 18 Free genetic engineering papers, essays, and research papers Frequently Asked Question (FAQ) 1: For all courses how can I most easily use Genetic Engineering Essay - Patrick ZimmerGenetic Engineering Essay.

FREE Genetic modification of food Essay

With tax money constantlyGenetically Modified Food And Crops Biology EssayGenetic modification of crops and food stuffs is one of the major controversial debates in the world.

Genetic Modification of Food- Argumentative Essay

There have been doubts onGenetic modification of food essay | Amapeloof obesity in the UK: How and to what extent is diet a contributing factor?

With modern food science has come the dawn of genetic modification

/ / Genetic Engineering Essay

GENETIC ENGINEERING - The benefits and problemsGenetic engineering is a powerful and potentially very dangerous tool. To alter the sequence of nucleotides of the DNA that code for the structure of a complex living organism, can have extremely ill effects although the potential benefits can be huge.Before advances in genetic applications, gene therapy was unheard of and genetic defects were always inherited, plaguing generations. Today genetic testing is widely available, such as prenatal karyotyping of chromosomes to check for genetic abnormalities. Genetic testing is also useful for families in which autosomal recessive disorders are known to exist, when these are planning to have children. In addition, genetic testing is available for people who might have inherited a genetic disorder which only becomes apparent later in life (for example Huntington's Disease). Individual choice decides whether a person would rather know if they are particularly vulnerable to certain diseases or more likely to die young. Knowing that your life may be short could inspire you to make the most of it while it could equally well cause severe depression.Today`s advances in gene therapy make it possible to even remove a faulty gene and replace it with a functioning gene in cells lacking this function. Though these techniques are available, they are still in the experimental stages. Somatic cell therapy, for example, uses faulty genes to target the affected areas for genetic treatment. This technique is beneficial in the treatment of cancers and lung, blood and liver disorders. Since the treatment is localised, any unwanted effects of this are not passed on to the next generation.A more controversial technique is the genetic alteration of gametes which causes a permanent change for the organism as well as for subsequent generations. Of course if the gene is corrected without further negative effects, the genetic disorder has beensuccessfully eliminated; but if a problem arises it could pass on. These advances in genetic engineering make the possibility of "designer babies" a reality. When the choice to change every aspect of every characteristic of a child is available, who would refuse? Why have an average child, when it is possible to have one with perfect health, good looking, intelligent and matching every other desirable characteristic which parents could want? The benefits seem endless: the potential for a perfect society without physical imperfections, low intelligence nor undesirable personality traits. How far this could go, is unpredictable; theoretically humans could for example be made more efficient - requiring less food but able to work harder. However, one of the problems with changing the structure of human DNA, is the subsequent loss of natural variation. As well as the unattractive possibility of very little variation in personalities and looks, the loss of natural variation would stop the formation of new genes, thereby severely decreasing the available gene pool. On the larger scale of life, natural variation is vital for subtle adaptions that help species accommodate to changing environments. If genetic alterations become widespread, genes required for particular circumstances or different environments that may be encountered by the organism, could conceivably be bred out. If then the organism encounters a change without the gene which would have made adaptation possible, it could suffer or even perish.Another large problem with all types of genetic engineering is the interdependence of genes: while on the one hand one gene may code for several features, on the other hand many genes are frequently required to code for one characteristic. While chromosome mapping is useful, without test crossing with every possible variable characteristic of an organism, it cannot be known what the functions of each gene are. Hence when a gene is removed, what is known about the function of that gene may not be all it codes for. The removed gene may also have a part to play in other functions. Similarly, the inserted gene may have other functions that are not known about. Some of the effects of these unknown gene functions may be noticed immediately and possibly be rectifiable, while others without immediate effect may cause significant long term changes. Little is known about the long term effects and potential dangers which may be inherited before they are noticed. Such problems may be cumulative and become harder to stop through time as the spread of new genetic problems continues through generations.This problem of inadequate knowledge regarding a gene's complete function applies also to the use of genetic engineering in food production. Be it livestock or crops, the alteration of genes, for example to boost growth, could have side effects such as weakening resistance to a particular disease. The inserted gene could even code for something harmful to humans. These problems may not even be immediately noticed and are hard to stop once cattle have been bred, crops sown or distributed. On the other hand, the benefits to humans are obvious where gene replacement has been successful in improving aspects of food production. For example, production costs can be lowered and health, taste and look of a product maximised. Equally, a lot of food shortage problems in the Third World could be solved by adapting crops to grow in such harsh conditions.An extreme idea of the future of meat production (Man Made Life- Jeremy Cherfas) involves the engineering of entirely new forms of meat: "a vast organ culture of immortal muscle cells supplied with a steady stream of crude nutrients (perhaps from other engineered cells) and harvested by hacking off a slab". Personally the idea of this is extremely unappealing but it is clear that the efficiency of meat production would rocket as the result of such an advance. In addition, the resources saved in such forms of meat production could be used elsewhere for human benefit.An example of another controversial but popentially beneficial form of genetic engineering is the alteration of pig DNA to suit human immunology. Recently the problem of organ donor shortage has become apparent due to increases in road safety and life saving technology. A simple solution is to use pig organs which function in similar ways and have a similar size to human organs. The immunology of pigs is also similar to that of humans but there is still the problem of organ rejection. Human antibodies would recognize the pig tissue as foreign and either destroy it or cause harm to the recipient.The solution is to change the antigenic properties of the pig tissue by genetically introducing human DNA that won't be rejected by the human immune system. Hence a breed of pigs containing human elements in their DNA was created. The obvious benefits would be a ready supply of organs not dependant on the death of ahealthy person as well as advance preparation time for the transplant to minimise the risk of rejection. The main problem consists of the possible introduction of new diseases to humans. A particular retrovirus has been discovered which, harmless to pigs, has the potential to cause severe ill effects in humans. All the previously mentioned applications of genetic engineering have had clear benefits to the human species in spite of equally apparent risks. However, one of the perhaps most dangerous risks of the new advances is their undeniable potential for biological warfare. This potential for engineering deadlier and more resistant infections or diseases scares all nations. Weapons could now be directed at the water supply or even crops grown by the enemy. Strains of pathogens could be tailored to the enemies strain of livestock or crops, starving a nation into surrender. By changing other common diseases, an antidote could be found to vaccinate allied populations while only the enemy would suffer. The benefit to the inflicting power is removal of enemy population without destroying buildings and resources (as an atomic weapon would). Since all sides are likely to have some form of biological weapon, however, none would go unaffected, thereby causing large scale suffering. This problem would be worsened if fast spreading diseases were used - without treatment whole populations could disappear in very little time.I feel that although some of the applications of actual genetic 'engineering' could be of immense use to humans (as the applications of gentic testing already are), too little is known about genetic structure to inflict the risks involved on the population. Despite this, genetically altered food has already started to fill the supermarkets, only labelled as such if genetically altered substance is present (and not when genetic engineering has taken place in the production process)."It has been estimated that the entire human genome will be mapped and all important genes sequenced before the end of the century" (British Medical Journal Vol.299). Surely with advances at this rate, these visions of the future of genetic engineering are not as far off as I would like to think. The potential risks involved to humanity rank alongside developments such as nuclear power in that the extent to which the whole population of this planet could be affected, is immense. Equally, the wide range of applications of genetic engineering make it possibly of the greatest use since the discovery of electricity. It is worth remembering, when the risks of the use of nuclear power became apparent to the scientists and ethical considerations started amongst the scientific community, the decision was taken out of the scientists' hands by political powers- which resulted in the disaster of Hiroshima. It is possible that the technological advances with genetic engineering could lead to equally or even more disastrous effects. It seems to me, that decisions regarding these technological tools are of a highly moral nature and need to be regarded as the responsibility of all of humanity. It is debatable and unclear, which form this 'taking of responsibility' should take, - but it seems to me that a wide international public debate is required about the issues involved. SOURCES- Tomorrow`s World: 'Genetics Special' BBC 1 Wed. 28th May 97- 'World Book' Encyclopedia- Encarta encyclopedia (CD ROM)- Jeremy Cerfas (1982). 'Man Made Life'. Blackwell Oxford - Helen Kingston (1989) DNA Analysis in Genetic Disorders. British Medical Journal Vol.299 - Anne Fullick (1994) Biology. Heineman Oxford - J. Simpkins & J.I. Williams (1990) Advanced Biology. Unwin Hyman London

Order now
  • You submit your order instructions

  • We assign an appropriate expert

  • The expert takes care of your task

  • We send it to you upon completion

Order now
  • 37 684

    Delivered orders

  • 763

    Professional writers

  • 311

    Writers online

  • 4.8/5

    Average quality score

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order